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Definitions

• x – feature vector

• c – number of classes

• L – number of classifiers

• {ω1, ω2, …., ωc} – Set of class labels• {ω1, ω2, …., ωc} – Set of class labels

• {D1, D2, …., DL} – Set of classifiers

▫ All c outputs from Di are in interval [0,1]

• DP(x) – Decision Profile matrix
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Approaches

• Class Conscience -Use one column of DP(x) at 
a time

▫ Ex) Simple/Weighted Averages 

• Class Indifferent – Treat DP(x) as a whole • Class Indifferent – Treat DP(x) as a whole 
new feature space, Use new classifier to make 
final decision.
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Discriminant to Continuous

• Non-continuous classifiers produce label

• {g1(x), g2(x), … gc(x)} – output of D

▫ Would like to normalize to [0,1] interval

• {g’1(x), g’2(x), … g’c(x)}, where 

• Softmax Method

Normalizes to [0,1]

• Better if g’(x) would

be a probability
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Converting Linear Discriminant 

• Assuming normal densities

• Let C be the constant additive terms we drop
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• Plug into Bayes Rule, and it simplifies to the 
softmax function
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Neural Networks

• Consider a NN, with c outputs, {y1, …, yc}

• When trained using squared error rate, the 
outputs can be used for an approximation of 
posterior probability.posterior probability.

• Normalize them to [0,1] interval using softmax
function.

• Normalization function independent of Neural 
network  training, only occurs on outputs.



Laplace Estimator for Decision Tree

• In Decision Trees, you use entropy to split the 
distribution based on a single feature per level

• Normally, you continue to split until there is a 
single class in each leaf of the treesingle class in each leaf of the tree

• In Probability Estimating Trees , instead of 
splitting until a single class is in a leaf, split until 
around K points are in each leaf, and use various 
methods to calculate the probability of each class 
at each leaf.



Count based probability, Laplace

• {k1, k2, …, kc} – Number of sample points of class 
{w1, w2, …., wc} respectively in leaf

• K = k1 + k2 + …+ kc

• Maximum Likelihood (ML) estimate of • Maximum Likelihood (ML) estimate of 

• When K is too small, estimates are unpredictable
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Laplace Estimator

• Laplace Correction

• m-estimation: 
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Ting and William Laplace estimator

• Ting and William

▫ ω* is majority class
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Weighted Distance Laplace Estimate

• Take the average distance from x to all samples 
of class wj, over the average distance to all 
samples
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Example



Class Conscious Combiners

• Non-trainable Combiners

▫ No extra parameters, all defined up front

▫ Function of classifier output for specific class
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Popular Class Conscious Combiners

• Minimum/Maximum/Median

• Trimmed Mean:

▫ L degrees of support sorted, X percent of values 
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▫ L degrees of support sorted, X percent of values 
are dropped. Mean taken of remaining.

• Product
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Generalized Mean Function

• Generalized Mean is defined as above except for 
the following special cases.
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the following special cases.

▫ a → -∞ , Minimum,

▫ a = -1, Harmonic Mean

▫ a = 0, Geometric mean

▫ a = 1, Simple Arithmetic Mean

▫ a → ∞, Maximum

• a is chosen before hand, level of optimism
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Class Conscious Combiner Example



Example: Effect of Optimism α

• 100 training / test sets
▫ Training set (a), 200 

samples

▫ Testing set (b), 1000 ▫ Testing set (b), 1000 
samples

• For each ensemble
▫ 10 bootstrap samples 

(200 values)

▫ Train classifier on each 
(Parzen)



Example: Effect of Optimism α

• Generalized mean
▫ 50 <= α <= +50, steps of 1
▫ -1 <= α <= +1, steps of 0.1

• Simple mean combiner gives best result



Interpreting Results

• Mean classifier isn’t always the best

• Shape of the error curve depends upon
▫ Problem

▫ Base classifier used▫ Base classifier used

• Average and product are most intensely studied 
combiners
▫ For some problems, average may be…

� Less accurate, but

� More stable



Ordered Weight Averaging

• Generalized, non-trainable

• L coefficients (one for each classifier)

• Order the results of ωj classifiers, descendingj

• Multiply by vector of coefficients b (weights)
▫ i1, …, iL is a permutation of the indices 1, …, L
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Ordered Weight Averaging: Example

• Consider a jury assessing sport performance 
(diving)
▫ Reduce subjective bias
� Trimmed mean
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Ordered Weight Averaging

• General form of trimmed mean
▫ b = [ 0, 1/(L-2), 1/(L-2), …, 1/(L-2), 0]T

• Other operations may be modeled with careful 
selection of bselection of b
▫ Minimum: b = [0, 0, …, 1]T

▫ Maximum: b = [1, 0, …, 0]T

▫ Average: b = [ 1/L, 1/L, …, 1/L]T

• Many resources spent on developing new 
aggregation connectives
▫ Bigger question: when to use which one?



Trainable Combiners

• Combiners with additional parameters to be 
trained

▫ Weighted Average

▫ Fuzzy Integral▫ Fuzzy Integral



Weighted Average

• 3 groups, based on number of weights
• L-weights

▫ One weight per classifier
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▫ Similar to equation we saw for ordered weight average, 
except we’re trying to optimize wi here (and we’re not 
reordering di,j)

▫ wi for classifier Di usually based on its estimated error 
rate
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Weighted Average

• cxL weights

▫ Weights are specific to each class
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▫ Only jth column is used in calc

▫ Linear regression commonly used to derive 
optimal weights

▫ “class conscious” combiner
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Weighted Average

• cxcxL weights
▫ Support for each class determined from entire 

decision profile DP(x)
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▫ Different weight space for each class ωj

▫ Whole decision profile is intermediate feature 
space
� “class indifferent” combiner
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Weighted Average: Class Conscious

• di,j(x) are point estimates of P(ωj | x)

▫ If estimates are unbiased, 
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▫ If estimates are unbiased, 

� µ(x) is nonbiased minimum variance estimate of 
P(ωj | x), conditional upon…

� restriction of coefficients wi to sum to 1
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Weighted Average: Class Conscious

• Weights derived to minimize variance of µ(x)
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• Weights derived to minimize variance of µ(x)
▫ µ(x) variance <= variance of any single classifier

• We assume point estimates are unbiased
▫ Variance of di,j(x) = expected squared error of di,j(x)

• When coefficients wi minimize variance
▫ µ(x) is better estimate of P(ωj | x) than any di,j(x) 



Ex: Variance of Estimate of P(ωj | x)

• Calculate variance of di,j(x)  (estimates)
• Target values of P(ωj | x) are

▫ 1 (in class ωj), 0 (not in class ωj)

▫ Output for class w1 of 2 classifier ensemble D = {D1, 
D2}, dataset Z = {z1, z2, …, z10}

▫ First 3 points in w1

▫ Table shows first columns of 10 DPs



Ex: Variance of Estimate of P(ωj | x)

• Variance of Di here is variance of 
approximation error
▫ Approximation error determined as

� {(1 – 0.71),(1 – 0.76),(1 – 0.15),…,(0 – 0.79)}

▫ Mean of approx. error for D1 is –0.225▫ Mean of approx. error for D1 is –0.225
▫ Variance of approx. error for D1 is

▫ Covariance matrix of approx. errors for classifiers 
is

( )
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Constrained Regression

• Assume approximation errors are normally 
distributed, zero mean
▫ P(ωj | x) – di,j(x) = approximation errors

▫ σ2 is covariance of approximation errors between ▫ σ2
ik is covariance of approximation errors between 

classifiers Di, Dk

• General Legrange form

• Find our optimal weights by minimizing J
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Constrained Regression

• Solution for minimizing J
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Ex: Constrained Regression

• Going back to the numbers we had from Table 
5.1
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▫ All the weights and covariances need to be labeled with 
j to indicate which P(ωj | x) we’re estimating
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Constrained Regression / Comparison

• Comparison of 
two combiners

▫ Simple avg

▫ Weighted avg▫ Weighted avg

• L varied: 2 – 30

▫ L > 20 tends to 
over fit



Constrained Regression, Extension

• Suppose classifier outputs for ωj are 
independent
▫ Σ is diagonal, with variances for D1, … DL along the 

diagonaldiagonal

▫ Simplifies weight optimization
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Fuzzy Integral

• Based on fuzzy set theory

• Main Idea:

Measure the strength of not only for each classifier Measure the strength of not only for each classifier 
but also for all subset of classifiers

• Measure of strength of each subset of classifier gives 
how good this subset for the given input x. Also 
called fuzzy measure



Fuzzy Integral cont.

subset D1 D2 D3 D1,

D2

D1,

D3

D2,

D3

D1,D2,

D3

g 0.3 0.1 0.4 0.4 0.5 0.8 1

jth column of decision profile for input x as [0.1 0.7 0.5]jth column of decision profile for input x as [0.1 0.7 0.5]
Goal: To find µj(x)
1. Sort the degrees of support in ascending order
2. Append 0 and 1 in the list if not present
3. For different value of α in the list find classifiers 

having support more than or equal to α
4. Subset of such classifiers are called α-cut (Hα)



Fuzzy Integral cont.

α = 0 H0 = {D1,D2,D3} g(H0) = 1

α = 0.1 H0.1= {D1,D2,D3} g(H0.1) = 1

α = 0.5 H0.5= {D2,D3} g(H0.5) = 0.8

α = 0.7 H = {D2} g(H ) = 0.1α = 0.7 H0.7= {D2} g(H0.7) = 0.1

α = 1 H1= Φ g(H1) = 0

µj(x) =  max{min(α,g(Hα))} = max{min(0,1), 
min(0.1,1),       min(0.5,0.8), min(0.7,0.1), min(1,0)}

= max(0, 0.1, 0.5, 0.1, 0) = 0.5



Class-Indifferent Combiners

• Unlike class-conscious combiners, these type of 
combiners uses all Lxc degrees of support in 
Decision Profile DP(x)



Decision Templates

• Typical decision profile (DP) that is a representative of 
class ωj is called Decision Template (DTj)

• Main Idea:• Main Idea:
▫ Compare decision template (DTj) with the current decision profile 

DP(x) for some test input x using some similarity measure.

• Training:
▫ For j = 1 to c, calculate the mean of the DPs(zk) for inputs from 

some data set Z that belongs to class ωj. This mean represent the 
decision template (DTj) 



Decision Template Cont.

so we have,

where N is the number of elements of Z from ωwhere Nj is the number of elements of Z from ωj

• Operation:
▫ Given an input set x € Rn, construct DP(x) and then perform 

similarity S between DP(x) and each DTj

µj(x) = S(DP(x), DTj) j = 1,…c.





Decision Template cont.

• Similarity Measure

1) Squared Euclidean Distance (DT(E))

where DTj(i,k) is the (i,k) entry in decision table DTj

▫ Similar to nearest mean classification in intermediate 
space 

▫ we can use other distance measures like Minkowski, 
Mahalanobis etc.



Decision Template cont.

Similarity Measure

2) Symmetric Difference (DT(S))
▫ This measure comes from fuzzy set theory



Decision Template cont.

• Illustration of Decision Template

0.6  0.4                               0.3  0.7

DT1 = 0.8  0.2                   DT2 =   0.4  0.6DT1 = 0.8  0.2                   DT2 =   0.4  0.6

0.5  0.5                                0.1  0.9

0.3  0.7               DT version µ1(x)     µ2(x)     Label 

DP(x) =   0.6  0.4                  DT(E)            0.9567    0.9333     ω1

0.5  0.5                  DT(S)            0.5333    0.5333      ω2



Why Class-Indifferent?

• Decision Templates approach is a context-free (free from 
the nature of classifier)

• Unlike class-conscious combiners which are idempotent 
by designby design

• Assume we have L copies of classifier D in the ensemble and 

the DTs for the two class are,

0.55  0.45                                       0.2  0.8

DT1 = …                           DT2 =              …

0.55  0.45                                       0.2  0.8

and if we have decision of D for x to be d1 = 0.4 and d2 = 0.6



Why Class-Indifferent?

• Then all class-conscious methods will assign x to 
class ω2

• But based on DT(E) we have 2 Euclidean distance as,

• Hence x classified as ω1.Which means that it is possible 
that true class is ω1 hence DTs proved to be correct 
where other combiners including D will be wrong



Dempster-Shafer Combination

• Its just another method of comparing the DTs and 
the DP of new x

• Instead of calculating the similarity between the DT 
and DP(x), this method measure the proximity of and DP(x), this method measure the proximity of 
individual classifiers output with those present in 
the DT

where DTi
j = ith row of DTj and Di(x) = output of Di



Dempster-Shafer Combination cont.

• Based on this, we calculate for each class j = 1 to c; 
for each of the classifier belief degrees as:

• And the final degree of support for the given input is 
given as:



Dempster-Shafer Combination cont.

• An illustration,

0.6  0.4                   0.3  0.7                0.3  0.7

DT1 =  0.8  0.4         DT2 = 0.4  0.6      DT3 = 0.6  0.4

0.5  0.5                   0.1  0.9                0.5  0.50.5  0.5                   0.1  0.9                0.5  0.5

Then the 3 proximities for each of 3 decision 
template:

class      Φj,1(x)         Φj,2(x)         Φj,3(x) 

ω1                0.4587 0.5000 0.5690

ω2                0.5413 0.5000 0.4310



Dempster-Shafer Combination cont.

• We have the belief equation for ω1

• Similarly we calculate belief for ω2,and the final degreeof
belief each class 1 and 2 are 

Class     bj (D1(x))       bj (D2(x))      bj (D3(x))      µj(x)

ω1            0.2799        0.3333        0.4289 0.5558

ω2             0.3898        0.3333        0.2462     0.4442



Classifier Fusion using DS 

Classifier Fusion using Dempster-Shafer theory of 
evidence to predict Breast Cancer Tumors

• DS theory of belief was applied to fuse breast cancer 
data obtained from different diagnostic techniques

• Classifiers used were SVM with linear, polynomial, 
and RBF kernel

• Classifiers gives beliefs for two classes: benign and 
malignant

• These evidences are then used to reach a final 
diagnosis using DS belief combination formula.
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